Borderline variants of the Muckenhoupt-Wheeden inequality

Carlos Domingo-Salazar - Universitat de Barcelona

joint work with M. Lacey and G. Rey

3CJI

Murcia, Spain

September 10, 2015

◆ロ ▶ ◆帰 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

The Hardy-Littlewood maximal operator

Definition

We consider the Hardy-Littlewood maximal operator defined by

$$Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_Q |f(y)| dy.$$

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ▲目 ● ● ●

It is easy to see that

```
M: L^1(\mathbb{R}^n) \not\longrightarrow L^1(\mathbb{R}^n),
```

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

$$M: L^1(\mathbb{R}^n) \not\longrightarrow L^1(\mathbb{R}^n),$$

but if we make the range a little bigger, then

$$M: L^1(\mathbb{R}^n) \longrightarrow L^{1,\infty}(\mathbb{R}^n). \quad \checkmark \checkmark$$

$$M: L^1(\mathbb{R}^n) \not\longrightarrow L^1(\mathbb{R}^n),$$

but if we make the range a little bigger, then

$$M: L^1(\mathbb{R}^n) \longrightarrow L^{1,\infty}(\mathbb{R}^n). \quad \checkmark \checkmark$$

Now we add a weight $(dx \rightsquigarrow w(x)dx)$, and

$$M: L^1(w) \longrightarrow L^{1,\infty}(w) \iff w \in A_1.$$

<□▶ < □▶ < □▶ < □▶ < □▶ = □ の < ⊙

$$M: L^1(\mathbb{R}^n) \not\longrightarrow L^1(\mathbb{R}^n),$$

but if we make the range a little bigger, then

$$M: L^1(\mathbb{R}^n) \longrightarrow L^{1,\infty}(\mathbb{R}^n). \quad \checkmark \checkmark$$

Now we add a weight $(dx \rightsquigarrow w(x)dx)$, and

$$M: L^1(w) \longrightarrow L^{1,\infty}(w) \iff w \in A_1.$$

But... if I want to have ANY weight w on the right-hand side, then what?

For every weight $w, M: L^1(\ref{eq: L^1,\infty}(w)) \longrightarrow L^{1,\infty}(w)$

イロト 不良 アイヨア イヨア ヨー ろくぐ

$$M: L^1(\mathbb{R}^n) \not\longrightarrow L^1(\mathbb{R}^n),$$

but if we make the range a little bigger, then

$$M: L^1(\mathbb{R}^n) \longrightarrow L^{1,\infty}(\mathbb{R}^n). \quad \checkmark \checkmark$$

Now we add a weight $(dx \rightsquigarrow w(x)dx)$, and

$$M: L^1(w) \longrightarrow L^{1,\infty}(w) \iff w \in A_1.$$

But... if I want to have ANY weight w on the right-hand side, then what?

For every weight
$$w, M: L^1(\ref{product}) \longrightarrow L^{1,\infty}(w)$$

イロト 不良 アイヨア イヨア ヨー ろくぐ

?? must be "larger" than w!

Fefferman-Stein inequality

In 1971, C. Fefferman and E. M. Stein, proved the following inequality:

Theorem

For every weight w, it holds that

$$M: L^1(Mw) \longrightarrow L^{1,\infty}(w).$$

Or equivalently,

$$\lambda w(Mf>\lambda) \leq C \int_{\mathbb{R}^n} |f(x)| Mw(x) dx, \quad \forall \lambda > 0.$$

イロト 不得 トイヨト イヨト ヨー ろくで

Muckenhoupt-Wheeden conjecture

The conjecture of B. Muckenhoupt and R. Wheeden was that "the same held for every Calderón-Zygmund operator T":

$$M: L^1(Mw) \longrightarrow L^{1,\infty}(w).$$
 (FS inequality)
 $T: L^1(Mw) \longrightarrow L^{1,\infty}(w).$ (MW conjecture)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Muckenhoupt-Wheeden conjecture

This was shown to be FALSE by M. C. Reguera and C. Thiele in 2012

 $H: L^1(Mw) \not\longrightarrow L^{1,\infty}(w).$

Muckenhoupt-Wheeden conjecture

This was shown to be FALSE by M. C. Reguera and C. Thiele in 2012

 $H: L^1(Mw) \not\longrightarrow L^{1,\infty}(w).$

Question

How can we modify the maximal operator $M \rightsquigarrow M_{\varphi}$ in the weight so that

$$T: L^1(M_{\varphi}w) \longrightarrow L^{1,\infty}(w),$$

ション ふゆ アメリア メリア しょうくしゃ

for every w and Calderón-Zygmund operator T?

We need to make M "larger"...

Orlicz versions of the maximal operator

The Hardy-Littlewood maximal operator can be written as

$$Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f(y)| dy = \sup_{x \in Q} \int_{\mathbb{R}^{n}} |f(y)| \frac{\chi_{Q}(y) dy}{|Q|}.$$

<□▶ < □▶ < □▶ < □▶ < □▶ = □ の < ⊙

Orlicz versions of the maximal operator

The Hardy-Littlewood maximal operator can be written as

$$Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f(y)| dy = \sup_{x \in Q} ||f||_{L^{1}(\chi Q/|Q|)}.$$

<□▶ < □▶ < □▶ < □▶ < □▶ = □ の < ⊙

Orlicz versions of the maximal operator

The Hardy-Littlewood maximal operator can be written as

$$Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f(y)| dy = \sup_{x \in Q} ||f||_{L^{1}(\chi_{Q}/|Q|)}.$$

We define

$$M_{\varphi}f(x) = \sup_{x \in Q} \|f\|_{\varphi(L)(\chi_Q/|Q|)},$$

where φ is a Young function such as:

• $\varphi(t) = t$ \rightsquigarrow $L^1 \text{ norm and } M_{\varphi} = M,$ • $\varphi(t) = t \log t$ \rightsquigarrow $L \log L \text{ norm},$ • ...

イロト 不良 アイヨア イヨア ヨー ろくぐ

Orlicz versions of the maximal operator

The Hardy-Littlewood maximal operator can be written as

$$Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f(y)| dy = \sup_{x \in Q} ||f||_{L^{1}(\chi_{Q}/|Q|)}.$$

We define

$$M_{\varphi}f(x) = \sup_{x \in Q} \|f\|_{\varphi(L)(\chi_Q/|Q|)},$$

where φ is a Young function such as:

•
$$\varphi(t) = t$$
 \rightsquigarrow $L^1 \text{ norm and } M_{\varphi} = M,$
• $\varphi(t) = t \log t$ \rightsquigarrow $L \log L \text{ norm},$
• ...

イロト 不良 アイヨア イヨア ヨー ろくぐ

Larger $\varphi \Rightarrow$

Orlicz versions of the maximal operator

The Hardy-Littlewood maximal operator can be written as

$$Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f(y)| dy = \sup_{x \in Q} ||f||_{L^{1}(\chi_{Q}/|Q|)}.$$

We define

$$M_{\varphi}f(x) = \sup_{x \in Q} \|f\|_{\varphi(L)(\chi_Q/|Q|)},$$

where φ is a Young function such as:

• $\varphi(t) = t$ \rightsquigarrow $L^1 \text{ norm and } M_{\varphi} = M$, • $\varphi(t) = t \log t$ \rightsquigarrow $L \log L \text{ norm}$, • ...

イロト 不良 アイヨア イヨア ヨー ろくぐ

Larger $\varphi \Rightarrow$ Larger operator $M_{\varphi} \Rightarrow$

Orlicz versions of the maximal operator

The Hardy-Littlewood maximal operator can be written as

$$Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f(y)| dy = \sup_{x \in Q} ||f||_{L^{1}(\chi_{Q}/|Q|)}.$$

We define

$$M_{\varphi}f(x) = \sup_{x \in Q} \|f\|_{\varphi(L)(\chi_Q/|Q|)},$$

where φ is a Young function such as:

• $\varphi(t) = t$ \rightsquigarrow $L^1 \text{ norm and } M_{\varphi} = M$, • $\varphi(t) = t \log t$ \rightsquigarrow $L \log L \text{ norm}$, • ...

Larger $\varphi \Rightarrow$ Larger operator $M_{\varphi} \Rightarrow$ Smaller space $L^1(M_{\varphi}w) \Rightarrow$

Orlicz versions of the maximal operator

The Hardy-Littlewood maximal operator can be written as

$$Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f(y)| dy = \sup_{x \in Q} ||f||_{L^{1}(\chi_{Q}/|Q|)}.$$

We define

$$M_{\varphi}f(x) = \sup_{x \in Q} \|f\|_{\varphi(L)(\chi_Q/|Q|)},$$

where φ is a Young function such as:

• $\varphi(t) = t$ \rightsquigarrow $L^1 \text{ norm and } M_{\varphi} = M$, • $\varphi(t) = t \log t$ \rightsquigarrow $L \log L \text{ norm}$, • ...

 $\begin{array}{l} \text{Larger } \varphi \Rightarrow \text{Larger operator } M_{\varphi} \Rightarrow \text{Smaller space } L^1(M_{\varphi}w) \Rightarrow \\ \text{More likely } T: L^1(M_{\varphi}w) \rightarrow L^{1,\infty}(w). \end{array}$

Current state of the problem

Question

What is the "least" Young function φ such that

$$T: L^1(M_{\varphi}w) \longrightarrow L^{1,\infty}(w),$$

◆ロ ▶ ◆帰 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

for every w and Calderón-Zygmund operator T?

Current state of the problem

Question

What is the "least" Young function φ such that

$$T: L^1(M_{\varphi}w) \longrightarrow L^{1,\infty}(w),$$

for every w and Calderón-Zygmund operator T?

$$\varphi(t) = t$$
 FALSE

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(Reguera 2011 / Reguera, Thiele 2012)

Current state of the problem

Question

What is the "least" Young function φ such that

$$T: L^1(M_{\varphi}w) \longrightarrow L^{1,\infty}(w),$$

for every w and Calderón-Zygmund operator T?

 $\varphi(t) = t(\log t)^{\epsilon}$ TRUE, $\forall \varepsilon > 0$

イロト 不得 トイヨト イヨト ヨー ろくで

(Pérez 1994 / Hytönen, Pérez 2015, with $C = \frac{1}{\epsilon}$)

Current state of the problem

Question

What is the "least" Young function φ such that

$$T: L^1(M_{\varphi}w) \longrightarrow L^{1,\infty}(w),$$

ション ふゆ アメリア メリア しょうくしゃ

for every w and Calderón-Zygmund operator T?

 $arphi(t)=t\log\log t(\log\log\log t)^{lpha}$ TRUE, orall lpha>1(D-S, Lacey, Rey 2015, and $C=rac{1}{lpha-1}$)

Current state of the problem

Question

What is the "least" Young function φ such that

$$T: L^1(M_{\varphi}w) \longrightarrow L^{1,\infty}(w),$$

for every w and Calderón-Zygmund operator T?

 $\varphi(t) = o(t \log \log t)$ FALSE

イロト 不得 トイヨト イヨト ヨー ろくで

(Calderelli, Lerner, Ombrossi 2015)

Current state of the problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Current state of the problem

◆ロ ▶ ◆帰 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

NEGATIVE RESULTS: With the Hilbert Transform. POSITIVE RESULTS: With the reduction to sparse operators.

Theorem (D-S, Lacey, Rey 2015)

Suppose the Young function φ satisfies

$$c_{\varphi} = \sum_{k=1}^{\infty} \frac{1}{\psi^{-1}(2^{2^k})} < \infty.$$

Then, for all C-Z operator T, and any weight w, it holds that $T: L^1(M_{\varphi}w) \longrightarrow L^{1,\infty}(w)$ with constant c_{φ} . That is,

$$\sup_{\lambda>0} \lambda w\{Tf > \lambda\} \lesssim c_{\varphi} \int_{\mathbb{R}^n} |f(x)| M_{\varphi} w(x) \, dx.$$

◆ロ ▶ ◆帰 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

Theorem (D-S, Lacey, Rey 2015)

Suppose the Young function φ satisfies

$$c_{\varphi} = \sum_{k=1}^{\infty} \frac{1}{\psi^{-1}(2^{2^k})} < \infty.$$

Then, for all C-Z operator T, and any weight w, it holds that $T: L^1(M_{\varphi}w) \longrightarrow L^{1,\infty}(w)$ with constant c_{φ} . That is,

$$\sup_{\lambda>0} \lambda w\{Tf > \lambda\} \lesssim c_{\varphi} \int_{\mathbb{R}^n} |f(x)| M_{\varphi} w(x) \, dx.$$

The function ψ is called the complementary function of φ , and whenever

$$\varphi(t) = tL(t),$$

with L a logarithmic part (log t, log log t, log log $t(\log\log\log t)^{\alpha}...$), then essentially

$$\psi^{-1}(t) \approx L(t).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Hence, for instance, when

$$\varphi(t) = tL(t) = t\log\log t(\log\log\log t)^{\alpha},$$

we have

$$c_{\varphi} = \sum_{k=1}^{\infty} \frac{1}{\psi^{-1}(2^{2^k})} \approx \sum_{k=1}^{\infty} \frac{1}{\log \log(2^{2^k})(\log \log \log(2^{2^k}))^{\alpha}}$$
$$\approx \sum_{k=1}^{\infty} \frac{1}{k(\log k)^{\alpha}} \lesssim \frac{1}{\alpha - 1}.$$

Hence, for instance, when

$$\varphi(t) = tL(t) = t\log\log t(\log\log \log t)^{\alpha},$$

we have

$$c_{\varphi} = \sum_{k=1}^{\infty} \frac{1}{\psi^{-1}(2^{2^k})} \approx \sum_{k=1}^{\infty} \frac{1}{\log \log(2^{2^k})(\log \log \log(2^{2^k}))^{\alpha}}$$
$$\approx \sum_{k=1}^{\infty} \frac{1}{k(\log k)^{\alpha}} \lesssim \frac{1}{\alpha - 1}.$$

Therefore, the theorem states that

$$\lambda w\{Tf > \lambda\} \lesssim \frac{1}{\alpha - 1} \int_{\mathbb{R}^n} |f(x)| M_{\varphi} w(x) dx.$$

We also recover the sharp constant of Hytönen-Pérez's result, with

$$\varphi(t) = t(\log t)^{\epsilon}$$

we have

$$c_{\varphi} \approx \sum_{k=1}^{\infty} \frac{1}{(\log 2^{2^k})^{\epsilon}} \approx \sum_{k=1}^{\infty} \frac{1}{2^{k\epsilon}} \approx \frac{1}{\epsilon},$$

and hence

$$\lambda w\{Tf > \lambda\} \lesssim \frac{1}{\epsilon} \int_{\mathbb{R}^n} |f(x)| M_{\varphi} w(x) dx$$

How to prove it

It is enough to show that, for every sparse operator S,

$$\lambda w \{ Sf > \lambda \} \lesssim c_{\varphi} \int_{\mathbb{R}^n} |f(x)| M_{\varphi} w(x) dx,$$

How to prove it

It is enough to show that, for every sparse operator S,

$$\lambda w\{Sf > \lambda\} \lesssim c_{\varphi} \int_{\mathbb{R}^n} |f(x)| M_{\varphi} w(x) dx,$$

where

$$Sf(x) = \sum_{Q \in \mathcal{S}} \left(\frac{1}{|Q|} \int_{Q} |f| \right) \chi_Q(x),$$

and ${\mathcal S}$ is a family of dyadic cubes such that, for every $Q\in {\mathcal S},$

$$\left|\bigcup_{Q'\in\mathcal{S}\,:\,Q'\subsetneq Q}Q'\right|\leq \frac{|Q|}{8}.$$

イロト 不良 アイヨア イヨア ヨー ろくぐ

How to prove it

It is enough to show that, for every sparse operator S,

$$\lambda w\{Sf > \lambda\} \lesssim c_{\varphi} \int_{\mathbb{R}^n} |f(x)| M_{\varphi} w(x) dx,$$

where

$$Sf(x) = \sum_{Q \in \mathcal{S}} \left(\frac{1}{|Q|} \int_{Q} |f| \right) \chi_Q(x),$$

and ${\mathcal S}$ is a family of dyadic cubes such that, for every $Q\in {\mathcal S},$

$$\left|\bigcup_{Q'\in\mathcal{S}\,:\,Q'\subsetneq Q}Q'\right|\leq \frac{|Q|}{8}$$

In fact, by linearity, we reduce to (GOAL)

$$w\{1 < Sf \le 2\} \lesssim c_{\varphi} \int_{\mathbb{R}^n} |f(x)| M_{\varphi} w(x) dx.$$

How to prove it

• We split \mathcal{S} into

$$S_k = \left\{ Q \in S : 2^{-k-1} < \frac{1}{|Q|} \int_Q |f| \le 2^{-k} \right\}.$$

How to prove it

 \bullet We split ${\mathcal S}$ into

$$S_k = \left\{ Q \in S : 2^{-k-1} < \frac{1}{|Q|} \int_Q |f| \le 2^{-k} \right\}.$$

By Fefferman-Stein, we can assume that S_k = Ø for k < 2, and, for every k ≥ 2, there is a finite number of layers S_k = S_{k,0} ∪ · · · ∪ S_{k,2^k}:

Figure : Layer decomposition of S_k .

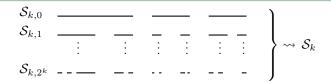
ション ふゆ アメリア メリア しょうくしゃ



イロト 不得 トイヨト イヨト ヨー ろくで

This gives a simpler description of the operator:

$$Sf(x) = \sum_{Q \in S} \left(\frac{1}{|Q|} \int_{Q} |f| \right) \chi_Q(x)$$

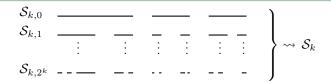


イロト 不得下 不良下 不良下

Э

This gives a simpler description of the operator:

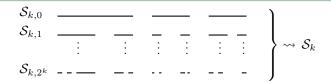
$$Sf(x) = \sum_{Q \in S} \left(\frac{1}{|Q|} \int_{Q} |f| \right) \chi_{Q}(x)$$
$$= \sum_{k=2}^{\infty} \sum_{\nu=0}^{2^{k}} \sum_{Q \in S_{k,\nu}} \left(\frac{1}{|Q|} \int_{Q} |f| \right) \chi_{Q}(x)$$



<ロト < 得下 < 用下 < 用下 = 用

This gives a simpler description of the operator:

$$Sf(x) = \sum_{Q \in \mathcal{S}} \left(\frac{1}{|Q|} \int_{Q} |f| \right) \chi_{Q}(x)$$
$$= \sum_{k=2}^{\infty} \sum_{\nu=0}^{2^{k}} \sum_{Q \in \mathcal{S}_{k,\nu}} \left(\frac{1}{|Q|} \int_{Q} |f| \right) \chi_{Q}(x)$$
$$\approx \sum_{k=2}^{\infty} \sum_{\nu=0}^{2^{k}} \sum_{Q \in \mathcal{S}_{k,\nu}} 2^{-k} \chi_{Q}(x)$$



This gives a simpler description of the operator:

$$Sf(x) = \sum_{Q \in \mathcal{S}} \left(\frac{1}{|Q|} \int_{Q} |f| \right) \chi_{Q}(x)$$

$$= \sum_{k=2}^{\infty} \sum_{\nu=0}^{2^{k}} \sum_{Q \in \mathcal{S}_{k,\nu}} \left(\frac{1}{|Q|} \int_{Q} |f| \right) \chi_{Q}(x)$$

$$\approx \sum_{k=2}^{\infty} \sum_{\nu=0}^{2^{k}} \sum_{Q \in \mathcal{S}_{k,\nu}} 2^{-k} \chi_{Q}(x)$$

$$= \sum_{k=2}^{\infty} 2^{-k} \sum_{\nu=0}^{2^{k}} \sum_{Q \in \mathcal{S}_{k,\nu}} \chi_{Q}(x) \rightarrow \text{overlapping.}$$

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

The main lemma is the following:

If $S = \sum_{k \ge 2} S_k$, with

$$S_k f(x) = \sum_{Q \in \mathcal{S}_k} \left(\frac{1}{|Q|} \int_Q |f| \right) \chi_Q(x).$$

The main lemma is the following:

If $S = \sum_{k \ge 2} S_k$, with

$$S_k f(x) = \sum_{Q \in \mathcal{S}_k} \left(\frac{1}{|Q|} \int_Q |f| \right) \chi_Q(x).$$

Lemma

For each $k \ge 2$, if we denote $\mathcal{E} = \{1 < Sf \le 2\}$,

$$\int_{\mathcal{E}} S_k f(x) w(x) dx \le 2^{-k} w(\mathcal{E}) + \frac{C}{\psi^{-1}(2^{2^k})} \int_{\mathbb{R}^n} |f(x)| M_{\varphi} w(x) dx.$$

Recall our goal was

$$w\{1 < Sf \le 2\} \lesssim c_{\varphi} \int_{\mathbb{R}^n} |f(x)| M_{\varphi} w(x) \ dx.$$

◆ロ ▶ ◆帰 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

The Muckenhoupt-Wheeden inequality – C. Domingo-Salazar Thank you for your attention!

Muchas Gracias!